

 Navigation

 	
 index

 	
 next |

 	Django Workshop v0.5.0

Django Workshop

Django Workshop is a free tutorial for the Python open source web
framework Django [http://www.djangoproject.com/] 1.5
which has been written by Markus Zapke-Gründemann and others. It is suitable for people who have basic programming skills.
You can either use the tutorial for self-study or book a training [http://www.transcode.de/] if you are stuck or need information not
provided in this tutorial.

Free means the tutorial is distributed under a Creative Commons
License and everyone is invited to contribute [https://bitbucket.org/keimlink/django-workshop]. If you have any
suggestions for improvements, or find any errors, please
let us know in the Issue Tracker [https://bitbucket.org/keimlink/django-workshop/issues?status=new&status=open].

If you have basic knowledge in the following areas it will be a lot
easier for you to learn Django:

	Object-oriented programming (using Python) [http://learnpythonthehardway.org/]

	HTTP Request/Response model [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol]

	HTML and CSS [http://htmldog.com/guides/]

	SQL and relational databases [http://sqlzoo.net/]

Table of contents

	Introduction

	Preparation

	Install Django

	A new Django Project

	The first Django App

	The Admin application

	Database and Development Web Server

	The first Views

	Authors

	License

Indices and tables

	Index

	Search Page

	To-do Items

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

Introduction

What is Django?

Django [http://www.djangoproject.com/] is a Full Stack Framework
written in Python [http://python.org/] that focuses on quick
development of web applications and clean, pragmatic design. It was
named after the French guitarist and composer Jean „Django“ Reinhardt [http://en.wikipedia.org/wiki/Django_Reinhardt] who is known as one of
the greatest guitar players of all time and is the first important
European jazz musician who made major contributions to the development
of the idiom.

Django`s source code and it’s comprehensive documentation [http://docs.djangoproject.com/] are licensed under the BSD-
license. The Django Software Foundation [http://www.djangoproject.com/foundation/] takes care of the further
development of Django.

Rapid Development

Django’s architecture and tools support a rapid development of
websites and new components.

Loose Coupling

Loose coupling means that the components have little or no knowledge
of the definitions of other separate components. This enhances the code
quality and makes it more reusable.

Don’t Repeat Yourself

The Don’t Repeat Yourself (DRY) principle is defined as follows:

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

http://c2.com/cgi/wiki?DontRepeatYourself

DRY is one prerequisite for Loose Coupling because components
can only be separated from each other if their purpose is clear.

Additionally it makes the day-to-day work easier if the code is not
spread over different parts of the application but can be found where it
would be expected.

Model-Template-View

Django is built on the Model-template-view (MTV) pattern. MTV is
based on the well known Model-view-controller pattern [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller] (MVC).

Django includes an Object-relational mapper (ORM) which creates
database structures using the models and performs all database
operations. It can operate with all major databases. All models are
written in Python.

The template engine supports the inheritance pattern and has a
extensive and extendable library of tags and filters.

The view fetches the data, for example using the Object-relational
mapper. But it is also possible to use diefferent data sources like web
services, key-value stores or even text files. This data is passed as
context to the template.

The URLconf controls the routing. The request is passed to the right
view with the of regular expressions.

The middleware takes an important position: It can intercept the
processing of the request at different positions. This is used for
session management or caching.

[image: digraph request_response { label = "Illustration: Schematic Diagram of Django's Request/Response Processing" "Browser":w -> "Web server":w [label="HTTP request"]; {rank=min; "Browser"} "Web server":sw -> "URLconf" [label="process_request\n(middleware)"]; "URLconf" -> "View" [label="process_view\n(middleware)"]; "View" -> "Model (ORM)" -> "Datenbase"-> "Model (ORM)" -> "View"; "View" -> "Template" [label="context"]; "Template" -> "Tags & Filters" -> "Template" "Template":ne -> "View":e; "View" -> "Web server":e [label="process_template_response\nprocess_response\n(middleware)"]; "Web server":e -> "Browser":e [label="HTTP response"]; }]

Built-in Development Web Server

Django comes with a built-in development web server. This simplifies
the setup of the development environment because no “real” web server
needs to be installed.

The Admin

Django contains the Admin, a CRUD [https://en.wikipedia.org/wiki/Create,_read,_update_and_delete]
application which can be created with minimal effort by using the models

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

Preparation

We’ll use Django Version 1.5. To get started we need to do
a little preparation.

Python

Django is written completely in Python [http://python.org/].
Therefore Python needs to be installed first.

Note

Django 1.5 supports Python from version 2.6.5. It’s
recommended to use Python version 2.7.3 or higher. If you have an
older version of Python, you should update it.

Since version 1.5, Django has experimental support for Python 3.2
and later. Django 1.6. will have stable support for Python 3.

You can find out which version of Python you’re running by using the
command line option -V:

$ python -V
Python 2.7.4

Note

If you are using Python 3 please make sure you have Python 3.3.2 or
greater installed. Otherwise there will be problems.

Also consider adding the following future-import on top of every
Python file you are going to edit to ensure Python 2 and 3
compatibility:

from __future__ import unicode_literals

This way all regular strings will be unicode string literals.

If you want to learn more read the Python 3 [https://docs.djangoproject.com/en/1.5/topics/python3/] part of the Django documentation.

If you’ve already got the right version of Python installed, you can
skip ahead to Python Package Managers.

Linux

Many Linux distributions come with Python already installed. If you
haven’t got a version of Python installed, you can normally use your
package manager to download and install it.

Alternatively, you can get the Python Sources [http://python.org/download/] from the website and compile it
yourself.

Mac OS X

Python comes pre-installed on Mac OS X. You can however use Homebrew [http://brew.sh/] to install your own copy of Python.

Windows

Download the Installer [http://python.org/download/] from the Python
Website and install it.

So that Python works under Windows as expected, you need to change the
environment variable %PATH%. In the examples, we’ll assume
that your Python is installed in C:\Python27\.

Windows 7

	Start, then right click on Computer

	Now click the context menu option Properties

	Next, in the window that just opened, click on the
Advanced System Settings

	A further window will open, click the
Environment Variables

	Under System Variables, select the PATH

	Now click on Edit and add the required directory:
;C:\Python27\;C:\Python27\Scripts;. (The semi-colon at the
beginning is required!)

	Now close the windows Environment Variables and
System Properties by clicking on OK.

Windows XP

	Start ‣ Control Panel ‣ System ‣ Advanced

	Click on the Environment Variables, then a new window
will open. Under “System Variables” select Path

	Now click on Edit and add the required directory:
;C:\Python27\;C:\Python27\Scripts;. (The semi-colon at the
beginning is required!)

	Now close the windows Environment Variables and
System Properties by clicking on OK.

Python Package Manager

Python uses its own package system [https://pypi.python.org/pypi] to
manage distribution and installation of Python packages. Because we will
need to install several packages, we must first install the package
manager.

setuptools

First setuptools [http://pythonhosted.org/setuptools/] needs to be
installed. Some systems install it by default, this can be verfied by
executing:

$ python -c "import setuptools"

If the execution results in an ImportError setuptools is not
installed and you have to follow the commands below. Otherwise continue
with the installation of pip.

It’s installed with the help of a bootstrap script which can be
downloaded here [https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py].
If installed, you can use curl to download it at the command
line. Otherwise just use the browser.

$ curl -O https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py

When the bootstrap script has been downloaded execute it to install
setuptools:

$ python ez_setup.py

Note

Under Linux and Mac OS X root privileges may be required.

You can delete the bootstrap script when the installation has been finished.

pip

We will use pip [http://www.pip-installer.org/] to install the
packages. pip was originally written as an improvement [http://www.pip-installer.org/en/latest/other-tools.html#easy-install]
of easy_install. pip can be installed with the
help from a bootstrap script which can be downloaded from
GitHub [https://raw.github.com/pypa/pip/master/contrib/get-pip.py].
If installed, you can use curl to download it at the command
line. Otherwise just use the browser.

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py

When the bootstrap script has been downloaded execute it to install
pip:

$ python get-pip.py

Note

Under Linux and Mac OS X root privileges may be required.

You can delete the bootstrap script when the installation has been finished.

After installation, you can test pip as follows:

$ pip --version
pip 1.4.1 from /home/docs/lib/python2.7/site-packages (python 2.7)

virtualenv and virtualenvwrapper

What is a virtualenv?

As soon as you work with more than one project you will sooner or later
have collisions between Python packages. Maybe an old project still
needs an older version of a package while you want to use the latest
version for your new project. This is where virtualenv [http://www.virtualenv.org/] can help.

virtualenv provides a “container” for each of your projects.
Each virtualenv can be separated from the system Python installation and
from other virtualens. Furthermore each virtualenv can be associated to
a different Python version. Finally virtualens can be used in production
to separate different projects on a single host.

Installation

Install virtualenv using pip:

$ pip install virtualenv

Note

Under Linux and Mac OS X root privileges may be required.

After the installation create a directory where you will create all your
virtualenvs, for example in your home directory:

$ mkdir .virtualenvs

Note

If you are using Windows use Envs instead of .virtualens.

Working easier and faster with virtualenvwrapper

virtualenvwrapper [http://www.doughellmann.com/projects/virtualenvwrapper/]
makes the creation and every day work with virtualenvs much easier by
providing a lot of additional helpers.

Linux and Mac OS X

Install virtualenvwrapper using pip:

$ pip install virtualenvwrapper

Note

Under Linux and Mac OS X root privileges may be required.

After the installation add the following two lines to your
.bashrc or .profile:

export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

WORKON_HOME defines where all virtualenvs are located. The script
virtualenvwrapper.sh loads the helpers.

Reload your shell configuration to be able to use virtualenvwrapper:

$ source .bashrc

Windows

Windows users can install virtualenvwrapper-win [https://pypi.python.org/pypi/virtualenvwrapper-win] instead of
virtualenvwrapper:

$ pip install virtualenvwrapper-win

Note

virtualenvwrapper-win does not work with PowerShell, use
the Command Prompt (cmd.exe) instead.

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

Install Django

Before we install Django to start our first project we create a new virtualenv:

$ mkvirtualenv django-workshop

If virtualenvwrapper is not installed on your system you have to run
virtualenv instead:

$ virtualenv .virtualenvs/django-workshop

Note

The command mkvirtualenv activates the virtualenv
automatically after it’s created. If you used virtualenv
to create the virtualenv you to activate it manually:

$ cd .virtualenvs/django-workshop
$. bin/activate

Alright, let’s install Django:

$ pip install Django

Note

Under Linux and Mac OS X root privileges may be required.

After a successful installation, you can check the Django version number
with the following command:

$ django-admin.py --version
1.4.8

Note

It could be that the file django_admin.py is actually called
django-admin. That’s not a problem, just leave off the
extension .py.

Note

On Windows you may get an ImportError when you try to run
django-admin.py. This is because Windows does not run the
Python interpreter from your virtual environment unless you invoke
it directly. Instead, prefix all commands that use .py files
with python and use the full path to the file, like so:

> python %USERPROFILE%\Envs\django-workshop\Scripts\django-admin.py

Install support for timezones

Starting with version 1.4, Django supports Timezones [https://docs.djangoproject.com/en/1.5/topics/i18n/timezones/#time-zones]. This is activated by default and it is
highly recommended to install the pytz [http://pytz.sourceforge.net/]
package:

$ pip install pytz

Note

Under Linux and Mac OS X root privileges may be required.

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

A new Django Project

Start the Django Project

You can create a new Django project with the following command:

$ django-admin.py startproject cookbook

After you’ve run the command you’ll find the following structure:

cookbook
|-- cookbook
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
`-- manage.py

Test the Development Server

After you’ve created the project, you can change to the directory
cookbook:

$ cd cookbook

And try out the development server with the following command:

$ python manage.py runserver
Validating models...

0 errors found
November 10, 2013 - 22:21:46
Django version 1.5.5, using settings 'cookbook.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now you can open the “Welcome to Django” site from
http://127.0.0.1:8000/. After you’ve opened the site, you can kill the
development server with CTRL + C.

[image: Welcome to Django]

Configuration

In order to work with the project, you need to configure it. To do that,
open the file settings.py in a text editor.

So that you don’t need to enter the project directory several times in
the configuration, you can save it in a “constant”. This constant can
then be used everywhere where the project directory is required.

import os

BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Note

It is important that the constant is defined at the very beginning
of the configuration file.

Next the database needs to be configured. We’ll use SQLite [http://www.sqlite.org/], as it’s built into Python.

Configure the existing database connection default as follows by
editing the emphasized lines:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': os.path.join(BASE_DIR, 'default.db'), # Or path to database file if using sqlite3.
 # The following settings are not used with sqlite3:
 'USER': '',
 'PASSWORD': '',
 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP.
 'PORT': '', # Set to empty string for default.
 }
}

Next change the timezone and language to suit:

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = 'Europe/Berlin'

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

The constant LANGUAGE_CODE configures the language of the Admin
inferface which we will use later to English. You can change it to a
different language, e.g. use de as LANGUAGE_CODE if you want
to use German.

Lastly, the paths to static files and templates must be defined. Add the
emphasized lines to the already existing constants. You can find them
further below the configuration file:

Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 os.path.join(BASE_DIR, 'static'),
)

TEMPLATE_DIRS = (
 # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 os.path.join(BASE_DIR, 'templates'),
)

Now create the directory for static files and templates under directory
cookbook:

$ mkdir static templates

Afterwards the directory structure should look as follows:

cookbook
|-- cookbook
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
|-- manage.py
|-- static
`-- templates

Further links to the Django documentation

	Django settings [https://docs.djangoproject.com/en/1.5/topics/settings/]

	Full list of Django settings [https://docs.djangoproject.com/en/1.5/ref/settings/]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

The first Django App

Now we start with the first Django application for our project “cookbook”.

This is how the data model looks like:

[image: An entity–relationship model of the recipes application]

	The name of the app is recipes

	It has two models: Recipe und Category

	The id field will be created automatically as primary key by the Django ORM

	Both models are connected by the n-m relation category

	Recipe.author is connected to the User model provided by Django’s auth app

Create the app

Because the application will manage recipes we will call it
recipes:

$ cd cookbook
$ python manage.py startapp recipes

This command will create a directory recipes containing these
four files:

recipes
|-- __init__.py
|-- models.py
|-- tests.py
`-- views.py

Create the Models

Now open the file models.py in a text editor. It contains only a single
import:

from django.db import models

To prevent problems with the encoding add the following line before the
import:

encoding: utf-8

A Model for the categories

Now start with the model for the categories:

encoding: utf-8
from django.db import models

class Category(models.Model):
 """Category model."""
 name = models.CharField('Name', max_length=100)
 slug = models.SlugField(unique=True)
 description = models.TextField('Description', blank=True)

The next step is to extend the class Category:

 class Meta:
 verbose_name = 'Category'
 verbose_name_plural = 'Categories'

 def __unicode__(self):
 return self.name

A Model for the recipes

Let’s start with the second model for the recipes:

class Recipe(models.Model):
 """Recipe model."""
 title = models.CharField('Title', max_length=255)
 slug = models.SlugField(unique=True)
 ingredients = models.TextField('Ingredients',
 help_text='One ingredient per line')
 preparation = models.TextField('Preparation')
 time_for_preparation = models.IntegerField('Time for preparation',
 help_text='Time in minutes', blank=True, null=True)
 number_of_portions = models.PositiveIntegerField('Number of portions')
 difficulty = models.SmallIntegerField('Difficulty',
 choices=DIFFICULTIES, default=DIFFICULTY_MEDIUM)
 category = models.ManyToManyField(Category, verbose_name='Categories')
 author = models.ForeignKey(User, verbose_name='Author')
 photo = models.ImageField(upload_to='recipes', verbose_name='Photo')
 date_created = models.DateTimeField(editable=False)
 date_updated = models.DateTimeField(editable=False)

We habe to add another import for the User class:

from django.contrib.auth.models import User

Add some constants for the difficulty field at the top of the class:

 DIFFICULTY_EASY = 1
 DIFFICULTY_MEDIUM = 2
 DIFFICULTY_HARD = 3
 DIFFICULTIES = (
 (DIFFICULTY_EASY, 'simple'),
 (DIFFICULTY_MEDIUM, 'normal'),
 (DIFFICULTY_HARD, 'hard'),
)

Again we have to add a Meta class and a __unicode__ method
for the Recipe class:

 class Meta:
 verbose_name = 'Recipe'
 verbose_name_plural = 'Recipes'
 ordering = ['-date_created']

 def __unicode__(self):
 return self.title

Because we want to populate the date fields automatically we have to
overload the save method:

 def save(self, *args, **kwargs):
 if not self.id:
 self.date_created = now()
 self.date_updated = now()
 super(Recipe, self).save(*args, **kwargs)

At the end of the save method we call the super [http://docs.python.org/library/functions.html#super] function to call
the parent method.

Finally we have to add the now function at the top of the file:

from django.utils.timezone import now

Note

PEP 8 [http://www.python.org/dev/peps/pep-0008], the Python documentation [http://docs.python.org/reference/simple_stmts.html#import] and
this short article [http://effbot.org/zone/import-confusion.htm]
provide more information about the import statement.

The complete file

When everything is complete, the file models.py should look as
follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	# encoding: utf-8
from django.contrib.auth.models import User
from django.db import models
from django.utils.timezone import now

class Category(models.Model):
 """Category model."""
 name = models.CharField('Name', max_length=100)
 slug = models.SlugField(unique=True)
 description = models.TextField('Description', blank=True)

 class Meta:
 verbose_name = 'Category'
 verbose_name_plural = 'Categories'

 def __unicode__(self):
 return self.name

class Recipe(models.Model):
 """Recipe model."""
 DIFFICULTY_EASY = 1
 DIFFICULTY_MEDIUM = 2
 DIFFICULTY_HARD = 3
 DIFFICULTIES = (
 (DIFFICULTY_EASY, 'simple'),
 (DIFFICULTY_MEDIUM, 'normal'),
 (DIFFICULTY_HARD, 'hard'),
)
 title = models.CharField('Title', max_length=255)
 slug = models.SlugField(unique=True)
 ingredients = models.TextField('Ingredients',
 help_text='One ingredient per line')
 preparation = models.TextField('Preparation')
 time_for_preparation = models.IntegerField('Time for preparation',
 help_text='Time in minutes', blank=True, null=True)
 number_of_portions = models.PositiveIntegerField('Number of portions')
 difficulty = models.SmallIntegerField('Difficulty',
 choices=DIFFICULTIES, default=DIFFICULTY_MEDIUM)
 category = models.ManyToManyField(Category, verbose_name='Categories')
 author = models.ForeignKey(User, verbose_name='Author')
 photo = models.ImageField(upload_to='recipes', verbose_name='Photo')
 date_created = models.DateTimeField(editable=False)
 date_updated = models.DateTimeField(editable=False)

 class Meta:
 verbose_name = 'Recipe'
 verbose_name_plural = 'Recipes'
 ordering = ['-date_created']

 def __unicode__(self):
 return self.title

 def save(self, *args, **kwargs):
 if not self.id:
 self.date_created = now()
 self.date_updated = now()
 super(Recipe, self).save(*args, **kwargs)

Activating the app

Open the file settings.py and add the name of our new
application at the end of the INSTALLED_APPS setting.

Now INSTALLED_APPS looks like this:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 # Uncomment the next line to enable the admin:
 'django.contrib.admin',
 # Uncomment the next line to enable admin documentation:
 # 'django.contrib.admindocs',
 'recipes',
)

Further links to the Django documentation

	Django Models [https://docs.djangoproject.com/en/1.5/topics/db/models/]

	Model field reference [https://docs.djangoproject.com/en/1.5/ref/models/fields/]

	Model Meta options [https://docs.djangoproject.com/en/1.5/ref/models/options/]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

The Admin application

Next, we will enable the admin application so that we can enter, edit
and delete data in our app.

This application is already included in Django.

Register your own application to the Admin

In order that the admin can be used with our application, we need to
make our models known to the admin.

This requires the file admin.py to be created in the
application. The project will then look like this:

cookbook
|-- cookbook
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
|-- manage.py
|-- recipes
| |-- __init__.py
| |-- admin.py
| |-- models.py
| |-- tests.py
| `-- views.py
|-- static
`-- templates

Then you open the file in your editor and add the following two lines of code:

from django.contrib import admin

from .models import Category, Recipe

The admin module and the models of the application are now available.

Note

The second import is a relative import. These were defined in
PEP 328 [http://www.python.org/dev/peps/pep-0328] and introduced in Python 2.6.

Next, we create a class in order to register the model Category with
the admin:

class CategoryAdmin(admin.ModelAdmin):
 prepopulated_fields = {'slug': ['name']}

admin.site.register(Category, CategoryAdmin)

There is nothing else to do.

The attribute prepopulated_fields helps the admin application to
fill the field slug automatically as you type. In this case, the
name attribute of the model is used.

That’s what we do now for the model Recipe:

class RecipeAdmin(admin.ModelAdmin):
 prepopulated_fields = {'slug': ['title']}

admin.site.register(Recipe, RecipeAdmin)

The complete file

The file admin.py should look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from django.contrib import admin

from .models import Category, Recipe

class CategoryAdmin(admin.ModelAdmin):
 prepopulated_fields = {'slug': ['name']}

class RecipeAdmin(admin.ModelAdmin):
 prepopulated_fields = {'slug': ['title']}

admin.site.register(Category, CategoryAdmin)
admin.site.register(Recipe, RecipeAdmin)

Activate the admin application

To activate the admin application, two steps are necessary.

Customizing the configuration

In the file settings.py remove the comment before the line
'django.contrib.admin' in INSTALLED_APPS to enable the admin
application.

Customize URLconf

Thus the admin application can also be accessed in the browser we must
also enable the URL of the admin.

Jump to the file cookbook/urls.py and uncomment the emphasized
lines. Then the file looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from django.conf.urls import patterns, include, url

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Examples:
 # url(r'^$', 'cookbook.views.home', name='home'),
 # url(r'^cookbook/', include('cookbook.foo.urls')),

 # Uncomment the admin/doc line below to enable admin documentation:
 # url(r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 url(r'^admin/', include(admin.site.urls)),
)

Further links to the Django documentation

	The Django admin site [https://docs.djangoproject.com/en/1.5/ref/contrib/admin/]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

Database and Development Web Server

Now we can populate the database and then call the development web
server in order to use the admin application.

Check the Models

First, you should check your models with the following command:

$ python manage.py validate

Django automatically checks the models for all operations that use
models. With this command you can also perform targeted testing.

Synchronize the Database

SQL queries from the models must now be produced, in order to fill the database.

With the following command you can issue the queries:

$ python manage.py sqlall recipes
BEGIN;
CREATE TABLE "recipes_category" (
 "id" integer NOT NULL PRIMARY KEY,
 "name" varchar(100) NOT NULL,
 "slug" varchar(50) NOT NULL UNIQUE,
 "description" text NOT NULL
)
;
CREATE TABLE "recipes_recipe_category" (
 "id" integer NOT NULL PRIMARY KEY,
 "recipe_id" integer NOT NULL,
 "category_id" integer NOT NULL REFERENCES "recipes_category" ("id"),
 UNIQUE ("recipe_id", "category_id")
)
;
CREATE TABLE "recipes_recipe" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(255) NOT NULL,
 "slug" varchar(50) NOT NULL UNIQUE,
 "ingredients" text NOT NULL,
 "preparation" text NOT NULL,
 "time_for_preparation" integer,
 "number_of_portions" integer unsigned NOT NULL,
 "difficulty" smallint NOT NULL,
 "author_id" integer NOT NULL,
 "photo" varchar(100) NOT NULL,
 "date_created" datetime NOT NULL,
 "date_updated" datetime NOT NULL
)
;
CREATE INDEX "recipes_recipe_cc846901" ON "recipes_recipe" ("author_id");
COMMIT;

To run these queries directly and create the tables and indexes you need
to run the following command. You will be asked if you would like to
create a superuser. Answer yes and fill out the fields that follow. In
the next step, you can login with these login details.

$ python manage.py syncdb
Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table recipes_category
Creating table recipes_recipe_category
Creating table recipes_recipe

You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (leave blank to use 'vagrant'): admin
E-mail address: admin@example.com
Password:
Password (again):
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Prepare Media Handling

After the database is created you need to do a few additional
preparations to be able to use the web development server. This is
because we used an ImageField in our Recipe model which needs
the Pillow [https://pypi.python.org/pypi/Pillow/2.2.1] package to be
installed.

Linux and Mac OS X

To prepare for the installation of Pillow under Linux the following
packages must be installed:

	libjpeg62

	liblcms1

	python-dev

For Mac OS X you can, for example, use Homebrew [http://brew.sh/] to
install the support for the JPG format:

$ brew install jpeg

Now Pillow can be installed:

$ pip install Pillow

Windows

Pillow for Windows must be installed as a binary package using easy_install:

> easy_install Pillow

Set up a media URL

Finally you need to setup a media URL for development. Add the following
lines at the end of cookbook/urls.py:

from django.conf import settings
if settings.DEBUG:
 # for development only: serve media files
 urlpatterns += patterns('',
 url(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT}),
)

Start the Web Development Server

Now you can start the development server:

$ python manage.py runserver
Validating models...

0 errors found
November 10, 2013 - 22:21:46
Django version 1.5.5, using settings 'cookbook.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Using the URL http://127.0.0.1:8000/admin/ you can now access the admin
application, log in to the super user you just created and add a few
recipes.

Export and Import of Data using JSON

So you can exchange data between different systems, there are built-in
Django export and import functions. With the command dumpdata
you can export the models of the application recipes:

$ mkdir recipes/fixtures
$ python manage.py dumpdata --indent 4 recipes > recipes/fixtures/initial_data.json

Note

Django loads the fixtures from a fixture called
initial_data.json every time you execute syncdb.
Therefore the data you just stored will be loaded automatically
every time you execute syncdb.

In addition, you can load the data with the command loaddata:

$ python manage.py loaddata recipes/fixtures/initial_data.json
Installed 4 object(s) from 1 fixture(s)

Note

To import data from other sources in Django loaddata is
only suitable to a limited extent because the fixtures always define
the primary keys. There are other apps, such as CSV importer [http://django-csv-importer.readthedocs.org/], that are more
suitable for the regular import of new data.

Further links to the Django documentation

	django-admin.py and manage.py [https://docs.djangoproject.com/en/1.5/ref/django-admin/]

	Providing initial data for models [https://docs.djangoproject.com/en/1.5/howto/initial-data/]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

The first Views

After you have created some records using the admin the next step is to
display them also in the frontend. Therefore you have do three things:

	Define URLs

	Write views

	Create templates

Note

See Illustration: Schematic Diagram of Django’s
Request/Response Processing

Define URLs

First we define the URLs that are used for calling the different views.
For now, we want to create two URLs. Jump to the file urls.py
and add at the end of urlpatterns the following two lines:

 url(r'^admin/', include(admin.site.urls)),
 url(r'^recipe/(?P<slug>[-\w]+)/$', 'recipes.views.detail'),

The file urls.py then looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	from django.conf.urls import patterns, include, url
from django.conf import settings

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Examples:
 # url(r'^$', 'cookbook.views.home', name='home'),
 # url(r'^cookbook/', include('cookbook.foo.urls')),

 # Uncomment the admin/doc line below to enable admin documentation:
 # url(r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 url(r'^admin/', include(admin.site.urls)),
 url(r'^recipe/(?P<slug>[-\w]+)/$', 'recipes.views.detail'),
 url(r'^$', 'recipes.views.index'),
)

if settings.DEBUG:
 # for development only: serve media files
 urlpatterns += patterns('',
 url(r'^media/(?P<path>.*)$', 'django.views.static.serve',
 {'document_root': settings.MEDIA_ROOT}),
)

Note

The first argument of the url() function is a raw string [http://docs.python.org/reference/lexical_analysis.html#string-literals],
which contains a regular expression.

If you encounter regular expressions for the first time, you can
learn more about it in the Regular-Expression-HOWTO [http://docs.python.org/howto/regex.html], on Regular Expressions.info [http://www.regular-expressions.info/] or in the article by Doug
Hellmann about the re-Modul [http://www.doughellmann.com/PyMOTW/re/].
At RegexPlanet [http://www.regexplanet.com/advanced/python/index.html]
you can test regular expressions directly in the browser.

Now you start the development server:

$ python manage.py runserver
Validating models...

0 errors found
November 10, 2013 - 22:21:46
Django version 1.5.5, using settings 'cookbook.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Calling the URL http://127.0.0.1:8000/ shows a ViewDoesNotExist
Exception. That’s right, because until now you still have no view
written. But it shows that your URL works.

How to render a template?

Before we write the first views we want to look how Django templates are
rendered.

Django templates are simple Python objects whose constructor expectes a
string. With the help of a context object the placeholders in the
template are replaced by the desired values.

The first example shows how to use a dictionary as a data structure:

$ python manage.py shell

Note

The command shell loads the settings from
settings.py for the current project, which would not happen
if you had simply typed python.

>>> from django.template import Context, Template
>>> t = Template('My name is {{ person.first_name }}.')
>>> d = {'person': {'first_name': 'Alice'}}
>>> t.render(Context(d))
u'My name is Alice.'

In the second example, we use a simple Python object as a data structure:

>>> class Person: pass
...
>>> p = Person()
>>> p.first_name = 'Bob'
>>> c = Context({'person': p})
>>> t.render(c)
u'My name is Bob.'

Lists can also be used:

>>> t = Template('First article: {{ articles.0 }}')
>>> c = Context({'articles': ['bread', 'eggs', 'milk']})
>>> t.render(c)
u'First article: bread'

Write the first view

So now the views have to be created. You want to display the data that
is retrieved from the database using the ORM. For this you open the file
recipes/views.py.

Most views return a HttpResponse object. So we write a very simple
view, which does this:

from django.http import HttpResponse

def index(request):
 return HttpResponse('My first view.')

After you have saved the view and called http://127.0.0.1:8000/
you’ll see the string that you passed to the HttpResponse object. So
a HttpResponse always expects a string as first argument.

Now we will replace the string with a Template and render it with a
Context which contains a Recipe object. The HttpResponse
will then return the string rendered by the Template:

from django.http import HttpResponse
from django.template import Context, loader

from .models import Recipe

def index(request):
 recipes = Recipe.objects.all()
 t = loader.get_template('recipes/index.html')
 c = Context({'object_list': recipes})
 return HttpResponse(t.render(c))

If you now call http://127.0.0.1:8000/ a TemplateDoesNotExist
exception is raised. Sure - you didn’t create the template yet.

Create Templates

First you need a basic template for your website. Create the file
base.html in the templates directory with the following
content:

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>{% block title %}Kochbuch{% endblock %}</title>
 </head>
 <body>
 <h1>Kochbuch</h1>
 {% block content %}{% endblock %}
 </body>
</html>

It contains HTML and two blocks. These will be filled by the other
templates which derive from this template.

Within the application, you have to create two directories for the
templates, namely recipes/templates/recipes. In it you create
the file index.html:

{% extends "base.html" %}

{% block title %}{{ block.super }} - List of recipes{% endblock %}

{% block content %}
<h2>List of recipes</h2>

 {% for recipe in object_list %}
 {{ recipe.title }}
 {% endfor %}

{% endblock %}

Now your directory structure should look like this:

cookbook
|-- cookbook
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
|-- default.db
|-- manage.py
|-- media
|-- recipes
| |-- __init__.py
| |-- admin.py
| |-- fixtures
| | `-- initial_data.json
| |-- models.py
| |-- templates
| | `-- recipes
| | `-- recipe.html
| |-- tests.py
| `-- views.py
|-- static
`-- templates
 `-- base.html

After you have started the development web server you should now see a
list of recipes if you call http://127.0.0.1:8000/.

Add the second view

Thus the detail view of the recipes work, a second view must are written.

First you need an additional import at the beginning of the file
views.py:

from django.http import Http404

At the end of the file comes a new function for the new view:

def detail(request, slug):
 try:
 recipe = Recipe.objects.get(slug=slug)
 except Recipe.DoesNotExist:
 raise Http404
 t = loader.get_template('recipes/detail.html')
 c = Context({'object': recipe})
 return HttpResponse(t.render(c))

The entire file now looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	from django.http import Http404
from django.http import HttpResponse
from django.template import Context, loader

from .models import Recipe

def index(request):
 recipes = Recipe.objects.all()
 t = loader.get_template('recipes/index.html')
 c = Context({'object_list': recipes})
 return HttpResponse(t.render(c))

def detail(request, slug):
 try:
 recipe = Recipe.objects.get(slug=slug)
 except Recipe.DoesNotExist:
 raise Http404
 t = loader.get_template('recipes/detail.html')
 c = Context({'object': recipe})
 return HttpResponse(t.render(c))

Create a second template

Now only the second template is missing: recipes/detail.html.
Put it in the same directory as recipes/index.html:

{% extends "base.html" %}

{% block title %}{{ block.super }} - {{ object.title }}{% endblock %}

{% block content %}
<h2>{{ object.title }}</h2>
<p>Makes {{ object.number_of_portions }} servings.</p>
<h3>Ingredients</h3>
{{ object.ingredients|linebreaks }}
<h3>Preparation</h3>
{{ object.preparation|linebreaks }}
<p>Time for preparation: {{ object.time_for_preparation }} minutes</p>
{% endblock %}

Now you can also view all the details of the recipes by clicking on the
links on the index page.

Why does the template engine hide variables that do not exist?

If a variable is not defined as key in the context, this is ignored by
the Django template engine. This is mainly makes sense in the production
environemnt, since as the site despite the absence of another variable
can be rendered.

To see anyway, if a variable has not been rendered, one can define a
string in the configuration settings.py which in this case
appears:

TEMPLATE_STRING_IF_INVALID = 'TEMPLATE NAME ERROR'

This setting should be disabled again in a production environment.

Escaping of HTML and JavaScript

For safety reasons the Django template engine escapes all HTML and
JavaScript that is in the context. Suppose a user uses the following
text in the field “preparation” of a recipe:

<script>alert('The best recipe in the world!')</script>
Heat the water in the pot to 100 °C.

Then this HTML would be generated:

<p><script>alert('The best recipe in the <world!')</script></p>
<p>Heat the water in the pot to 100 °C.</p>

The JavaScript code would therefore not be executed.

It is also possible to remove HTML tags completely. To do this you’d
have to use the striptags filter in the template:

<h3>Preparation</h3>
{{ object.preparation|striptags|linebreaks }}

Now the HTML looks like this:

<p>alert('The best recipe in the world!')</p>
<p>Heat the water in the pot to 100 °C.</p>

Are you sure, however, that HTML or JavaScript should be rendered and
possibly be executed, you can use the safe filter to explicitly
allow this:

<h3>Preparation</h3>
{{ object.preparation|safe|linebreaks }}

Now actually the JavaScript is executed as desired by the user:

<p><script>alert('The best recipe in the world!')</script></p>
<p>Heat the water in the pot to 100 °C.</p>

Note

This allows of course XSS attacks [https://en.wikipedia.org/wiki/Cross-site_scripting] and should
therefore be used with caution.

Further links to the Django documentation

	URL dispatcher [https://docs.djangoproject.com/en/1.5/topics/http/urls/]

	Writing views [https://docs.djangoproject.com/en/1.5/topics/http/views/]

	The Django template language [https://docs.djangoproject.com/en/1.5/topics/templates/]

	Automatic HTML escaping [https://docs.djangoproject.com/en/1.5/topics/templates/#automatic-html-escaping]

	The Django template language: For Python programmers [https://docs.djangoproject.com/en/1.5/ref/templates/api/]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Workshop v0.5.0

Authors

Markus Zapke-Gründemann

Markus Zapke-Gründemann [http://www.keimlink.de/] looks back on over
twelve years of experience in software development and works for more
than five years as self-employed software developer, consultant and
trainer. His focus is on developing web applications with Django and
integration with Mercurial. He is the owner of
transcode [http://www.transcode.de/], a company offering Python and
Django software development and training.

Additional Authors

Many thanks for supporting this project go to:

	Daniel Kriesten

	Dave Brotherstone

	Dinu Gherman

	Florian Apolloner

	Maik Derstappen

	Max Brauer

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	
 previous |

 	Django Workshop v0.5.0

License

This work is licensed under a Creative Commons Attribution-ShareAlike
License 3.0 Germany. To view a copy of the licence please see:
https://creativecommons.org/licenses/by-sa/3.0/de/deed.en or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California 94105, USA.

[image: cc-by-sa]

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 Navigation

 	
 index

 	Django Workshop v0.5.0

Index

 Symbols
 | C
 | D
 | E
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V

Symbols

 	

 	%PATH%

C

 	

 	Configuration

D

 	

 	Development server

 	Don't Repeat Yourself

 	

 	DRY

E

 	

 	
 environment variable

 	

 	%PATH%

I

 	

 	Install Django

 	Install Python

 	

 	Install Python Package Manager

L

 	

 	Loose Coupling

M

 	

 	Model-Template-View

 	

 	MTV

P

 	

 	pip

 	Project structure

 	

 	
 Python Enhancement Proposals

 	

 	PEP 328

 	PEP 8

R

 	

 	Rapid Development

 	

 	runserver

S

 	

 	setuptools

 	

 	startproject

T

 	

 	timezones

V

 	

 	virtualenv

 	virtualenvwrapper

 	

 	virtualenvwrapper-win

 Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

 _static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_images/welcome_to_django.jpg
Congratulations on your first Django-powered page.

Of couse, you havent actualy dons any work ye. Hore's what t do xt:

= 1 you plan 1 uso a database, ot he DATABASES seting inmys.te/settngs. .
= Star your st pp by running pyehon sanage.py seartarp (appasme).

‘Vouro soeing this message because you have oEauG = Tcue n your Django satingsfl andyou havent cofigured any URLs. Gotto work!

_images/cc-by-sa.png
) ®O

_images/graphviz-458529ca5e8fe64defe20e7eeef3703c8e94bf37.png
recipes
Recipo
i "AutoFiekd
author ForeignKey (i)
date_created DatTimeF i
date_updated DatTimeF i
N . - k . - ity SmallnegerFe
Dotfile @ Django Extensions graph_models Created @ @ @ @ Options @ recipes Labels ingredisnts TextFiekt Refatons
number_of_portons PositelntagerFel
photo ImageFiek!
preparaton TaxtFin
sig SugFei
fime_for_preparation IniegerFil
e CharFin
\category (recie) autfor (ece)
Category
0 ‘AutoFiekd
nama CharFi
sig SugFel

_images/graphviz-8de6318bf412b3ace2be39809a6d8b1f293ce7dd.png
Browser

HTTP request

Web server

process_request
(middleware)

HTTP response

process_template_response
process_response
(middleware)

process_view
(middleware)

Model (ORM)
Tags & Filters

lllustration: Schematic Diagram of Django's Request/Response Processing

_static/plus.png

_static/up.png

todo.html

 Navigation

 		
 index

 		Django Workshop v0.5.0 »

To-do Items

This is a to-do list of things, well, to-do for this documentation. In
case this page contains no more text there is nothing to do.

Note

For all entries there should be an issue in the BitBucket Issue Tracker [https://bitbucket.org/keimlink/django-workshop/issues?status=new&status=open].
In order to reference these issues you can use extlinks-key
issue:

.. todo:: :issue:`68` Typo on "URLs and Views"

 © Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

_static/comment.png

search.html

 Navigation

 		
 index

 		Django Workshop v0.5.0 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2013, Markus Zapke-Gründemann et al.
 Last updated on Nov 12, 2013.
 Created using Sphinx 1.2b3.

_static/ajax-loader.gif

_static/up-pressed.png

_static/down.png

_static/file.png

